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Topological complexes: the idea

Use combinatorics to define the space structure

Think of a space as of an “assembly”, a “complex”

- a composition of “elementary pieces”

Use algebraic methods for the analysis

What can serve as an “elementary piece”?



Simplexes
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Simplicial complex




Face of the simplex

/-simplex (71(;)
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Face of a n-simplex is a n—/ simplex

Simplex contains all of its faces




Simplicial complex
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Simplicial complex :a union of simplexes

Overlap of any 2 simplexes produces a simplex from K

Simplicial complex K is defined by:

1. the list of its simplexes

2. the list of simplex “incidences”



Simplex orientation




Boundary of the simplex
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Boundary of a polyhedron




Boundary of the simplicial complex




Boundary of an oriented simplicial complex







Boundary of an oriented simplicial complex




Boundary of an oriented simplicial complex




Boundary of an oriented simplicial complex




Simplicial complex K, orientation




What is the use of simplicial complexes?

lopology —

Algebra —

Computation



Topology via types of paths

Paths, equivalence classes,[7]

Topological index m of the path [y],, produced
the fundamental group z,(X)=Z



Simplicial complex
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Cycle deformation
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A cycle z can be deformed over the simplex K
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Cycle deformations Az s are snapped over
the boundaries of 2D simplexes: z, = z,+05\?



Cycle deformation
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Cycle deformations Az s are snapped over
the boundaries of 2D simplexes: z, = z,+05\?



Homologous cycles

Homologous cycles: z, ~z, (homotopic paths)



Topological analysis with cycles

How many classes of homologous
cycles are there?



Non-homologous cycles
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Non-homologous cycles: z, # z,

What feature makes these cycles different?



Classes of cycles
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Cycles z, can be contracted to a point,

because it is a boundary of a contractible 2D “surface”
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Non-homologous cycles: z, #z,

1. Contractible cycles, e.g. 7,
2. Non-contractible cycles, e.g. 7,



Homologies

H, =(classes of homologous cycles)

“z,is homologous to z,” =

= “z, is equal to z, modulo a boundary cycle”

H, = (Cycles)/(Boundaries)



Homologies

“z,is homologous to z,” =

= “z,is equal to z, modulo a boundary cycle”

H, = (Cycles)/(Contractible cycles)

= (non-contractible cycles and their multiples)



Homologies

“z,is homologous to z,” =

= “z, is equal to z, modulo a boundary cycle”

= (Cycles)/(Contractible cycles) =
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Fundamental vs. homological group
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Fundamental group, First homology group,



Homologies

Theorem 1: Homological groups do not depend
on simplicial subdivision of polyhedron*

Theorem 2: Homological groups are
topologically invariant

* For fine enough subdivisions



What we ultimately want with homologies

How many classes of homologous
cycles are there, in every dimension?

’ ’ Cycles

Boundaries




Betti numbers — number of cycles in every dimension

Circle Q (1,1,0,0,.)



Topological properties, examples

r\h ‘,:,, j?.‘.? —
F‘Hﬁ*

fErs il (¥ s i

Cycle connectedness: 3 0-cycles, and 3 pieces



lmension

“Topological barcode”
(1,1,0,0,...)
(1,0,1,0,..)
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How to build simplexes in practice?
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http://www.cgal.org

How to build a triangulation of a surface?


http://www.cgal.org/

Cech complex
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Cech complex
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Cech complex
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Cech complex
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Cech complex
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Cech complex

Simplicial complex, K
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If the cover is fine enough, the homologies of the complex K
are the same as the homologies of the original space.



A manifold and its cover




A cover generates simplex




Simplex produces full topological information

- Homologies, etc.

Test: what is the
“Topological barcode” of this space?

Sphere (1,0,1,0,.)
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V. de Silva, Homological sensor networks, (2007)






Hole in sensor coverage area
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What is the wireless topology of the US?

Verizon Wireless

AT&T Sprint T-Mobile
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Point cloud data
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The ideas of topological persistence
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The unfolding of the topological information

Example: Sphere
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Topological barcode of a sphere
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Topological barcode (1,0, 1,0,0...)



The unfolding of the topological information




The unfolding of the topological information
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“Topology! The stratosphere of human thought! In

the twenty-fourth century it might possibly be of
use to someone...”

A. Solzhenitsyn, “The First Circle” (1955—58)

Homology: An Idea Whose Time Has Come

B. Cipra, SIAM News, Vol. 42(10), (2009)



1. Simplexes and simplicial complexes
2. Boundaries and orientations

3. Homologous cycles

4. Homological group

Next: Neuroscience applications...

jPlex, computational topology software, Stanford University
http://comptop.stanford.edu/u/programs/jplex/index.html|



http://comptop.stanford.edu/u/programs/jplex/index.html

