Topology: simplicial methods

Yuri Dabaghian

Baylor College of Medicine & Rice University

dabaghian at rice.edu

Topological complexes: the idea

Use combinatorics to define the space structure

Think of a space as of an "assembly", a "complex"

- a composition of "elementary pieces"

Use algebraic methods for the analysis

What can serve as an "elementary piece"?

Simplexes

Simplicial complex K

Face of the simplex

Simplicial complex K

Simplicial complex K: a union of simplexes

Overlap of any 2 simplexes produces a simplex from K

Simplicial complex *K* is defined by:

1. the list of its simplexes

2. the list of simplex "incidences"

Simplex orientation

Boundary of the simplex

Boundary of a polyhedron

Boundary of the simplicial complex

Simplicial complex K, orientation

What is the use of simplicial complexes?

Topology \rightarrow

Algebra \rightarrow

Topology via types of paths

Paths, equivalence classes,[*y*]

Topological index *m* of the path $[\gamma]_m$ produced the **fundamental group** $\pi_1(X) = \mathbb{Z}$

Simplicial complex

Space is approximated by the complex K

Discretization of paths

Space is approximated by the complex K

Paths y are defined over K

Paths
$$\gamma \rightarrow cycles$$
, z

Cycle deformation

A cycle z can be deformed over the simplex K

Cycle deformation

Cycle deformations Δz 's are snapped over the boundaries of 2D simplexes: $z_1 = z_2 + \partial \sigma^{(2)}$

Cycle deformation

Cycle deformations Δz 's are snapped over the boundaries of 2D simplexes: $z_1 = z_2 + \partial \sigma^{(2)}$

Homologous cycles

Homologous cycles: $z_1 \sim z_2$ (homotopic paths)

Topological analysis with cycles

How many classes of homologous cycles are there?

Non-homologous cycles

Non-homologous cycles: $z_1 \not \sim z_2$

What feature makes these cycles different?

Classes of cycles

Cycles z_2 can be contracted to a point,

because it is a boundary of a *contractible* 2D "surface"

Classes of cycles

Non-homologous cycles: $z_1 \neq z_2$

- 1. Contractible cycles, e.g. z_1
- 2. Non-contractible cycles, e.g. z_2

$H_1 = ($ classes of homologous cycles)

" z_1 is homologous to z_2 " =

= " z_1 is equal to z_2 modulo a boundary cycle"

$$H_1 = (Cycles) / (Boundaries)$$

Homologies

" z_1 is homologous to z_2 " =

= " z_1 is equal to z_2 modulo a boundary cycle"

$$H_1 = (Cycles) / (Contractible cycles)$$

= (non-contractible cycles and their multiples)

Homologies

" z_1 is homologous to z_2 " =

= " z_1 is equal to z_2 modulo a boundary cycle"

$$H_1 = (Cycles) / (Contractible cycles) = \mathbb{Z}$$

First homology group

Fundamental vs. homological group

$$(paths) \rightarrow (indexes)$$

Fundamental group,

$$\pi_1(X) = \mathbb{Z}$$

 $(cycles) \rightarrow (indexes)$

First homology group,

 $H_1(X) = \mathbb{Z}$

Homologies

<u>Theorem 1</u>: Homological groups do not depend on simplicial subdivision of polyhedron*

Theorem 2: Homological groups are topologically invariant

* For fine enough subdivisions

What we ultimately want with homologies

How many classes of homologous cycles are there, in every dimension?

Betti numbers – number of cycles in every dimension

Topological properties, examples

Cycle connectedness: **3** *O*-cycles, and **3** pieces

Betti index – base cycles in every dimension

How to build simplexes in practice?

http://www.cgal.org

How to build a triangulation of a surface?

If the cover is fine enough, the homologies of the complex *K* are the same as the homologies of the original space.

A manifold and its cover

A cover generates simplex

Simplex produces full topological information

Homologies, etc.

Test: what is the "Topological barcode" of this space?

Sphere (1, 0, 1, 0,...)

Topology from sensor networks

V. de Silva, Homological sensor networks, (2007)

Hole in sensor coverage area

What is the wireless topology of the US?

Hole in sensor coverage area

Coverage (HSPA)

Coverage (EV-DO)

3G Broadband Coverage (HSPA)

Point cloud data

(a) Surface

(b) Molecule

(c) Universe

The ideas of topological persistence

The unfolding of the topological information

Example: Sphere

Topological barcode of a sphere

Topological barcode (1, 0, 1, 0, 0 ...)

The unfolding of the topological information

The unfolding of the topological information

"Topology! The stratosphere of human thought! In the twenty-fourth century it might possibly be of use to someone..."

A. Solzhenitsyn, "The First Circle" (1955-58)

Homology: An Idea Whose Time Has Come

B. Cipra, SIAM News, Vol. 42(10), (2009)

Summary

- 1. Simplexes and simplicial complexes
- 2. Boundaries and orientations
- 3. Homologous cycles
- 4. Homological group

Next: Neuroscience applications...

jPlex, computational topology software, Stanford University http://comptop.stanford.edu/u/programs/jplex/index.html