Topology: simplicial methods

Yuri Dabaghian
Baylor College of Medicine \& Rice University
dabaghian at rice.edu

Topological complexes: the idea

Use combinatorics to define the space structure

Think of a space as of an "assembly", a "complex"

- a composition of "elementary pieces"

Use algebraic methods for the analysis

What can serve as an "elementary piece"?

Simplexes

x_{1}

x_{2}

0 -simplex $\sigma_{1}^{(0)}$

- x_{1}
w

Face of the simplex

Face of a n-simplex is a $n-1$ simplex

Simplex contains all of its faces

Simplicial complex

Simplicial complex : a union of simplexes

Overlap of any 2 simplexes produces a simplex from K

Simplicial complex K is defined by:

1. the list of its simplexes
2. the list of simplex "incidences"

Simplex orientation

Boundary of the simplex

$$
\partial \sigma_{123}^{(2)}=\sigma_{12}^{(1)}+\sigma_{23}^{(1)}+\sigma_{31}^{(1)}
$$

$$
\partial \sigma_{123}^{(2)} \neq \sigma_{12}^{(1)}-\sigma_{23}^{(1)}+\sigma_{31}^{(1)}
$$

Boundary of a polyhedron

Boundary of the simplicial complex

Boundary of an oriented simplicial complex

Boundary of an oriented simplicial complex

Boundary of an oriented simplicial complex

Boundary of an oriented simplicial complex

Simplicial complex K, orientation

What is the use of simplicial complexes?

Topology \rightarrow

$$
\text { Algebra } \rightarrow
$$

Computation

Topology via types of paths

Paths, equivalence classes,[$\gamma]$
Topological index m of the path $[\gamma]_{m}$ produced the fundamental group $\pi_{I}(X)=\mathbb{Z}$

Simplicial complex

Space is approximated by the complex K

Discretization of paths

Space is approximated by the complex K

Paths γ are defined over K

$$
\text { Paths } \gamma \rightarrow \text { cycles, } z
$$

Cycle deformation

A cycle z can be deformed over the simplex K

Cycle deformation

Cycle deformations Δz 's are snapped over
the boundaries of $2 D$ simplexes: $z_{1}=z_{2}+\partial \sigma^{(2)}$

Cycle deformation

Cycle deformations Δz 's are snapped over
the boundaries of $2 D$ simplexes: $z_{1}=z_{2}+\partial \sigma^{(2)}$

Homologous cycles

Homologous cycles: $z_{1} \sim z_{2}$ (homotopic paths)

Topological analysis with cycles

How many classes of homologous cycles are there?

Non-homologous cycles

Non-homologous cycles: $z_{1} \nprec z_{2}$

What feature makes these cycles different?

Classes of cycles

Cycles z_{2} can be contracted to a point,
because it is a boundary of a contractible 2D "surface"

Classes of cycles

Non-homologous cycles: $z_{1} \nprec z_{2}$

1. Contractible cycles, e.g. z_{l}
2. Non-contractible cycles, e.g. z_{2}

Homologies

$H_{1}=($ classes of homologous cycles $)$

" z_{1} is homologous to z_{2} " =

$$
=\text { " } z_{1} \text { is equal to } z_{2} \text { modulo a boundary cycle" }
$$

$$
H_{1}=(\text { Cycles }) /(\text { Boundaries })
$$

Homologies

" z_{1} is homologous to z_{2} " $=$
$=$ " z_{1} is equal to z_{2} modulo a boundary cycle"

$$
H_{1}=(\text { Cycles }) /(\text { Contractible cycles })
$$

$=($ non-contractible cycles and their multiples $)$

Homologies

" z_{1} is homologous to z_{2} " $=$
$=$ " z_{1} is equal to z_{2} modulo a boundary cycle"

$$
H_{1}=(\text { Cycles }) /(\text { Contractible cycles })=\mathbb{Z}
$$

First homology group

Fundamental vs. homological group

(paths) \rightarrow (indexes)
Fundamental group,

$$
\pi_{1}(X)=\mathbb{Z}
$$

(cycles) \rightarrow (indexes)
First homology group,

$$
H_{1}(X)=\mathbb{Z}
$$

Homologies

Theorem 1: Homological groups do not depend on simplicial subdivision of polyhedron*

Theorem 2: Homological groups are topologically invariant

[^0]
What we ultimately want with homologies

How many classes of homologous cycles are there, in every dimension?

Betti numbers - number of cycles in every dimension

Circle
$(1,1,0,0, \ldots)$
$(1,1,0,0, \ldots)$

Topological properties, examples

Cycle connectedness: 30 -cycles, and 3 pieces

Betti index - base cycles in every dimension

"Topological barcode"

How to build simplexes in practice?

http://www.cgal.org
How to build a triangulation of a surface?

Čech complex

Čech complex

Simplicial complex, K

If the cover is fine enough, the homologies of the complex K are the same as the homologies of the original space.

A manifold and its cover

A cover generates simplex

Simplex produces full topological information

Homologies, etc.

Test: what is the
"Topological barcode" of this space?

Sphere
$(1,0,1,0, \ldots)$

Topology from sensor networks

V. de Silva, Homological sensor networks, (2007)

Hole in sensor coverage area

What is the wireless topology of the US?

Point cloud data

The ideas of topological persistence

Points
ϵ-BALLS
CĚch Complex

The unfolding of the topological information

Example: Sphere

Topological barcode of a sphere

Topological barcode (1, 0, 1, 0, 0 ...)

The unfolding of the topological information

The unfolding of the topological information

"Topological barcode"

$$
(1,2,1,0, \ldots)
$$

Torus
\downarrow

"Topology! The stratosphere of human thought! In the twenty-fourth century it might possibly be of use to someone..."

A. Solzhenitsyn, "The First Circle" (1955-58)

Homology: An Idea Whose Time Has Come
B. Cipra, SIAM News, Vol. 42(10), (2009)

Summary

1. Simplexes and simplicial complexes
2. Boundaries and orientations
3. Homologous cycles
4. Homological group

Next: Neuroscience applications...
jPlex, computational topology software, Stanford University http://comptop.stanford.edu/u/programs/iplex/index.html

[^0]: * For fine enough subdivisions

